International Journal of Economic Issues, 1: 1 (2008): 25-42 © International Science Press

THE DYNAMIC CHARACTERISTICS OF COMPETITIVENESS IN THE EU FISH MARKET

KONSTANTINOS POLYMEROS

Department of Ichthyology and Aquatic Environment
University of Thessaly, Greece

CONSTANTINOS KATRAKILIDIS

Department of Economics, Aristotle University of Thessaloniki

The aim of this paper is to estimate the competitive level of fresh fish exports among the Euro-Mediterranean countries. "Revealed Competitive Advantage" (RCA), indices of the Italian, French, Greek, Portuguese and Spanish fresh fish exports are estimated, in order to gain new insights regarding the position of these products in the market of the European Union, in terms of competitiveness. In addition, this study investigates the dynamic linkages among countries and the way that their competitive level is affected, using Cointegration and Innovation Accounting analysis. The estimated RCA indices reveal that there is a wide range of competitiveness among Euro-Mediterranean countries. In addition, the investigation of the dynamic characteristics of competitiveness reveals that the competitive position for each country is affected at different levels by different factors, constituting a dynamic market that can be easily influenced by changes in the volatile marketing environment.

JEL classification: F14, O17, O22

Key words: Fish, Competitiveness, EU market.

1. INTRODUCTION

It is widely argued that competitiveness recently became a major factor that determines the future opportunities and dynamics of the food industry (Kennedy *et al.*, 1997; Hyvonen, 1995; Jensen *et al.*, 1995; Tefertiller and Ward, 1995; Porter, 1990; Murphy, 1989). Major policy developments such as the World Trade Organization (WTO) negotiations, the Common Agricultural (CAP) and Fisheries Policy (CFP) reforms, and the recent enlargement of the European Union, have caused significant progress in reducing, and in some cases eliminating, barriers to trade. Thus, the macro-marketing environment is changing significantly, greatly intensifying the competition among exporting countries. Fisheries products are found amidst this competitive world and face new threats and opportunities.

In addition, consumers today are deeply concerned about issues of food quality, the environment and society (Baltzer, 2004; Hobbs et al., 2002). Thus, competitiveness

is becoming a very complex issue, as food products must be competitive and at the same time meet all these consumer concerns. Fisheries are not an exception as they face a very competitive worldwide market. Fisheries constitute a significant part of the EU food market, and spectacular import growth has been recorded over the last decade. The five Mediterranean (Med5) countries of the EU (France, Italy, Greece, Portugal and Spain) constitute important fresh fish suppliers, and EU imports from the Med5 countries present an upward trend over the last decade (Table 1). Specifically, EU fresh fish imports from the Med5 countries have increased remarkably, from ϵ 415 million in 1995 to ϵ 932 million in 2005. The Med5 exports to EU(15) presents an important upward trend, from 26% in 1995 to 36% in 2005. The lack of relevant literature does not offer an adequate explanation of the observed changes in the market of fresh fish, so an investigation into competitiveness and the factors affecting it might be conducive to policy formation and future marketing strategies.

Table 1 EU fresh fish imports (€ million)*

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
EU15	1622	1770	1793	2030	2219	2441	2491	2445	2404	2450	2554
Med5	415	503	571	633	692	797	832	911	920	917	932
%	26	28	32	31	31	33	33	37	38	37	36

Source: Eurostat

In this study, we attempt to investigate the competitiveness of the Med5 fresh fish exports in the EU market. A comparative approach for the Med5 countries is followed in order to study the competitive performance of fresh fish and to provide valuable information on the changes in competitiveness over the decade 1995-2005. In addition, we investigate the factors affecting competitiveness employing the *Cointegration and Innovation Accounting* methodologies. The paper is organized as follows: a thumbnail review of the theoretical concepts and the employed models are presented in the next section. Estimates of Revealed Competitive Advantage (RCA) indices, Cointegration and Innovation Accounting analysis, as well as their implications are reported in Section III, followed by concluding remarks in Section IV.

2. THEORETICAL AND METHODOLOGICAL ISSUES

The recent empirical estimation of competitiveness comprises many scientific approaches, since globalization has significantly increased competition in the world trade. Literally, the term *competitiveness* describes the ability of firms and industries to stay competitive which, in turn, reflects their ability to protect and/or improve their position in relation to competitors (Drescher and Maurer, 1999). A similar definition is given by Pitts and Lagnevik (1998), who define competitiveness of an industry as the ability to profitably gain and maintain market share in domestic and/or in foreign markets. Another definition considers competitiveness as the "sustained ability of a nation's industry or firms to compete with foreign counterparts in foreign markets as well as in domestic markets under conditions of free trade" (Kim and Marion, 1997).

^{*}Figures represent the annual means constructed from monthly data.

According to Kennedy *et al.*, (1997), competitiveness is the ability to achieve market share. Thus, a product for which market share is increasing can be said to be increasing in competitiveness and, conversely, a product is regarded as decreasing in competitiveness if its market share is in decline.

The competitiveness of national economies, sectors/industries and of individual firms and products can be evaluated through the estimation of the RCA index. The RCA index has been applied in a number of studies to check whether a country reveals or not comparative advantage in a specific sector/industry, (Balassa, 1965; Havrila and Gunawardana, 2003; Hillman 1980). In this case the index can be presented as

$$RCA_{ii} = (x_{ii}/X_i)/(x_{iw}/X_w) \tag{1}$$

where, RCA_{ij} is the revealed comparative advantage index for industry i of country j, x_{ij} is exports of industry i of country j, X_j is total exports of country j, x_{iw} is the world exports of industry i, and X_w is total world exports. If the value of the index exceeds unity, it can be said that the country has a revealed comparative advantage. In other words, the industry's share in the country's total exports is greater than its share in the world trade. If the value is less than unity, the country is said to have a comparative disadvantage in the sector/industry. According to Havrila and Gunawardana (2003) there are three interpretations of the RCA values: dichotomous, ordinal and cardinal. In the dichotomous interpretation the RCA is applied to check whether there is a comparative advantage or not; in the ordinal interpretation the RCA is applied to rank sectors or countries in terms of comparative advantage; in the cardinal interpretation the RCA is applied to measure the dimension of comparative advantage.

Moreover, the RCA index has been extensively applied to analyze the competitive position of the export market share of a country for a specific product and its export market share for total trade in a set of countries, (Banterle, 2005; Drescher and Maurer, 1999; Pitts and Lagnevik, 1998; Jensen *et al.*, 1995; Hyvonen, 1995; Murphy, 1989). In this case, the index can formally be presented as:

$$RCA_{ij} = \left(\frac{X_{ij}}{\sum_{i} X_{ij}}\right) / \left(\frac{\sum_{i} X_{ij}}{\sum_{ij} X_{ij}}\right)$$
 (2)

where *X* denotes exports, *i* denotes country, and *j* denotes product. The values of the index can be more or less than one. If a country has an RCA index higher than one, it has a competitive advantage, whereas if the RCA index is less than one then no competitive advantage is revealed. However, the RCA index is affected by the total exports of the country. Thus, the same market share of a sector or product could lead to different RCA estimates in accordance with the level of the total exports of that country. For this reason, Pitts and Lagnevik (1998) suggest that RCA indices should be compared over a time period. This approach gives not only a better insight into the evolution of competitiveness for each country, but also provides valuable information regarding the competitive ranking among competing countries.

However, the RCA index measures the competitive advantage of a country in the trade of a specific product, rather than analyzing the source of competitive advantage (Havrila and Gunawardana, 2003; Lee 1995). Thus, a further empirical analysis is

needed in order to identify the source of competitive advantage and to define the explanatory factors of the RCA fluctuations. In this study *Co-integration* and *Innovation Accounting* analysis have been implemented in order to investigate the relationship among RCA indices and price factors regarding fresh fish exports of the Med5 countries towards the EU market. Regarding the estimation of the price factors, the following formula was used:

$$P_{ij} = V_{ij}/Q_{ij} \tag{3}$$

where V denotes values (in \in), Q denotes quantities (in Kg), i denotes country, and j denotes product.

Regarding the investigation of the relationship among RCA indices and prices, the empirical approach used is based in the following methodology:

2.1 Cointegration

The long-run relationship between a number of series can be looked at from the viewpoint of cointegration. Cointegration is a time series modelling technique developed to deal with non stationary time series in a way that does not waste the valuable long-run information contained in the data. Moreover, the need to evaluate models which combine both short-run and long-run properties and which at the same time maintain stationarity in all of the variables, has prompted a reconsideration of the problem of regression using variables measured in their levels. As Granger and Newbold (1974), and Phillips(1986), pointed out, given that many economic time series exhibit the characteristics of the integrated processes of order one, I(1), estimating traditional OLS or VAR models with I(1) processes can lead to nonsensical or spurious results. Note that, I(1) processes are those which need to be differenced to achieve stationarity.

Let x(t) be a vector of n-component time series each integrated of order one. Then x(t) is said to be cointegrated CI(1, 0), if there exists a vector f such that

$$s(t) = \phi' x(t)$$

is I(0). Stationarity of s(t) implies that the n variables of x(t) do not drift away from one another over the long-run, obeying thus an equilibrium relationship. If ϕ exists, it will not be unique, unless x(t) has only two elements. The Engle and Granger (1987), approach can deal with the possibility of only one linear combination of variables that is stationary. Recent advances in cointegration theory (Johansen and Juselius, 1990) have developed a maximum likelihood (ML) testing procedure on the number of cointegrating vectors which also allows inferences on parameter restrictions. The ML method uses a vector autoregressive (VAR) model

$$\Delta x(t) \sum_{i=1}^{q-1} \Pi_i \Delta x(t-i) + \Pi_q x(t-q) + \mu + v(t)$$
(4)

where x(t) is a $n \times 1$ vector of variables, \prod_q is a $n \times n$ matrix of rank $r \le n$, μ is a $n \times 1$ vector of constant terms, v(t) is a $n \times 1$ vector of residuals and Δ is the first difference operator. The testing procedure involves the hypothesis H_2 : $\alpha\beta'$, where α and β are

 $n \times r$ matrices of loadings and eigenvectors respectively, that there are r cointegrating vectors β_1 , β_2 , ..., β_r which provide r stationary linear combinations $\beta'x(t-q)$. The likelihood ratio (LR) statistic for testing the above hypothesis

$$-2\ln Q = T \cdot \sum_{i=r+1}^{n} \ln(1-\hat{\lambda}_i)$$
 (5)

is a test that there are at most r cointegrating vectors versus the general alternative (trace), where λ_i corresponds to the n-r smaller eigenvalues. The $n\times r$ matrix of cointegrating vectors b can be obtained as the r, n-element eigenvectors corresponding to λ_i .

The LR test statistic for testing r against r + 1 cointegrating vectors is given by

$$-2\ln(Q:r|r+1) = -T\cdot\ln(1-\hat{\lambda}_r+1). \tag{6}$$

The above tests (2) and (3) are used to determine the significant eigenvalues and the corresponding number of eigenvectors.

2.2 Innovation Accounting

Innovation accounting consists of impulse response analysis and variance decompositions. More specifically, according to the Wold decomposition theorem, any finite linearly regular covariance stationary process y(t), $m \times 1$, has a moving average representation

$$y(t) = \sum_{s=0}^{\infty} \Phi(s)u(t-s)$$
 (7)

with

$$Var[u(t)] = \sum_{x} dx$$

Although u(t) is serially uncorrelated by construction, the components of u(t) may be contemporaneously correlated. Therefore, an orthogonalizing transformation to u(t) is done so that (7) can be rewritten as

$$y(t) = \sum_{s=0}^{\infty} \Phi(s) P^{-1} Pu(t-s) = \sum_{s=0}^{\infty} \theta(s) w(t-s)$$

where $\theta(s) = \Phi(s)P^{-1}$, w(t-s) = Pu(t-s) and Var[w(t)] = Var[Pu(t)] = I.

When P is taken to be a lower triangular matrix, the coefficients of $\theta(s)$ represent "responses to shocks or innovations" in particular variables. More precisely, the jk-th element of $\theta(s)$ is assumed to represent the effect on variable j of a unit innovation in the k-th variable that has occurred s periods ago. Furthermore, we can allocate the variance of each element in y to sources in elements of w, since w is serially and contemporaneously uncorrelated. The orthogonalization provides

$$\sum_{s=0}^{T} \theta(s)_{ij}^{2}$$

which is the components-of-error variance in the T+1 step ahead forecast of y_i which is accounted for by innovations in y_i .

However, performing the analysis of competitiveness at sector/industry level reveals an average measure of competitiveness for that sector/industry but does not reflect particular strengths and weaknesses of individual products, unless the competitiveness is analyzed at a disaggregated level. In the case of fresh fish, numerous individual fresh fish products exist in the EU market, and considering all of them requires barely available data and the estimation of a large number of parameters. To avoid these impediments, the current analysis is performed with a more broadly defined fresh fish product category. According to the official classification of Eurostat, fresh fish product category includes fresh or chilled fish (category 0302). Available country-by-country as well as total EU(15) monthly data, regarding fresh fish product category, for the years 1995 to 2005 were used.

3. RESULTS AND DISCUSSION

Applying formula (2), RCA indices were derived for the Med5 countries. Results demonstrate that all countries, except Spain, reveal competitive advantage (Table 2). Specifically, Greek fish exports have the highest competition level (2.34), followed by French (1.18), Portuguese (1.13) and Italian (1.12) fish exports. The evolution of competitiveness reveals that Portugal and Greece have strengthened their position considerably, while France and Italy reveal an almost constant trend. In terms of percentage gain/loss, Portugal achieved the highest increase (+44%), followed by Greece (+37%) and Spain (+5%), while France and Italy reveal a negligible loss (-0.5%).

Table 2 RCA Indices'

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	Gain/ Loss(%)
France	1.19	1.31	1.36	1.23	1.31	1.17	1.21	1.29	1.18	1.06	1.18	- 0.55
Italy	1.13	0.95	1.09	1.08	0.97	0.99	1.03	0.85	0.93	0.97	1.12	-0.55
Greece	1.70	1.65	1.87	1.83	2.20	2.17	2.48	2.51	2.56	2.46	2.34	+37.42
Portugal	0.79	0.80	0.63	1.04	0.76	0.97	0.75	0.82	1.19	0.99	1.13	+43.92
Spain	0.57	0.56	0.52	0.54	0.53	0.57	0.54	0.54	0.51	0.65	0.60	+4.54

Source: own calculations based on Eurostat data

Applying formula (3), prices were estimated for the exports of each country. Results demonstrate that export prices for all countries, except Greece, present an upward trend (Table 3). In 1995, Greek exports hold the highest price level (5.85), followed by

Table 3
Prices (in €)*

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	Gain/ Loss(%)
France	4.21	3.61	2.68	3.22	3.50	3.28	3.83	3.95	4.01	4.40	5.36	+ 27.39
Italy	1.84	1.90	1.98	2.05	2.16	1.93	2.31	2.74	2.33	2.04	2.52	+36.90
Greece	5.85	5.94	6.38	5.87	5.57	4.60	4.96	3.70	3.88	3.91	4.00	-31.64
Portugal	1.95	2.01	2.12	2.45	2.62	2.07	3.41	2.49	3.53	2.95	1.97	+1.40
Spain	1.60	1.86	2.20	2.33	2.35	2.44	3.03	2.87	3.46	3.30	3.11	+94.54

Source: own calculations based on Eurostat data

^{*}Figures represent the annual means constructed from monthly data.

^{*}Figures represent the annual means constructed from monthly data.

French (4.21), Portuguese (1.95), Italian (1.84) and Spanish (1.60). In 2005, French exports hold the highest prices (5.36), followed by Greek (4.00), Spanish (3.11), Italian (2.52) and Portuguese (1.97). Concerning the percentage gain/loss, Spanish exports present the highest increase (+94.54%), followed by Italian (+36.9%), French (+27.39%) and Portuguese (+1.40%), while Greek exports reveal a considerable loss (-31.64%).

The results obtained by the empirical analysis, reveal the following:

3.1 Integration Analysis

Regarding the integration characteristics of the involved variables (RCA and prices), findings demonstrate that series are non stationary at levels while they become stationary when tested in first difference form (Table 4). In particular, when the Dickey-Fuller (ADF) test is applied on the levels of the variables and the testing statistic includes only an intercept all variables are non stationary. However, when the test statistic includes a linear trend LRG, LRP, LPI and LPP exhibit stationary properties though they turn to non-stationary procedures after the sixth lag. Furthermore, when the variables are tested in first difference form either without or with a linear trend they become stationary. Since the results might be considered vague and having in mind that the conventional stationarity tests are of low power, we decided at this step, to consider that all series are I(1). Dealing with nonstationary series implies the possible existence of a long run equilibrium relationship (cointegration) among them and hence causal interactions among the examined variables in the short and long run time horizon.

Table 4
Unit-Root Tests for the Variables in Levels

		LRF	LRI	LRG	LRS	LRP	LPF	LPI	LPG	LPS	LPP
Not a	ADF(6)	-1.0189	-3.1889	-2.8502	-3.0652	-3.7486	-1.4247	-2.7130	-1.3467	-1.9168	-5.4670
trend	ADF(12)	32710	-1.3627	-2.6241	-2.2939	-1.9448	.077671	-1.2307	-1.0542	-2.0070	-2.2106
Linear	ADF(6)	-3.0005	-3.2845	-3.4608	-6.1786	-4.2380	-3.4442	-4.4315	-2.3706	-3.3168	-6.3328
Trend	ADF(12)	-1.6283	-1.0607	-1.5004	-3.3933	-2.2647	-2.0669	-2.5528	-1.6951	-3.4154	-1.8894

Note: 95% critical value for the augmented Dickey-Fuller statistic with intercept but not a trend = −2.8859 95% critical value for the augmented Dickey-Fuller statistic with intercept and a linear trend = −3.4481

Unit-Root Tests for the Variables in First Differences

	Let Market	DLRF	DLRI	DLRG	DLRS	DLRP	DLPF	DLPI	DLPG	DLPS	DLPP
trend	ADF(12)	-4.4862	-4.3611	-4.7872	-5.1941	-4.5298	-5.4832	-4.4037	-2.9982	-4.0725	-4.9946
Linear	ADF(6)	-8.2589	-7.4349	-5.6486	-7.3831	-7.8948	-5.6877	-5.7043	-6.1852	-6.5729	-6.9419
trend	ADF(12)	-4.8539	-4.3757	-5.0936	-5.2831	-4.4931	-5.5885	-4.3818	-3.0023	-4.0926	-5.0215

Note: 95% critical value for the augmented Dickey-Fuller statistic with intercept but not a trend = -2.8861 95% critical value for the augmented Dickey-Fuller statistic with intercept and a linear trend = -3.4484

3.2 Cointegration and Error Correction (EC) Analysis

Regarding the cointegration tests among RCA indices and the whole set of the price series for each one of the examined countries, the findings, based on Maximal Eingevalue and Trace tests, reveal the existence of long run equilibrium relationships,

which implies the existence of causal effects in either/or both the short and long run time horizon. The results for each country – France, Italy, Greece, Spain and Portugal – are presented in Tables 5A, 6A, 7A, 8A and 9A, respectively. The estimated cointegrated vectors are presented in tables 5B, 6B, 7B, 8B and 9B, respectively.

Table 5A
Cointegration with no Intercepts or Trends in the VAR

	Coin	tegration with	no Intercepts	or Trends in t	he VAR	
	Cointegration	ı LR Test Based o	n Maximal Eige	envalue of the S	tochastic Matrix	
130 observ	ations from 1995N	/12 to 2005M11.	Order of VAR	= 2		
	iables included in					
LRF	LPF	LPI		PG	LPS	
LPP						
List of I(0)	variables included	d in the VAR:				
SC1	SC2	SC3	SC	24	SC5	
SC6	SC7	SC8		29	SC10	
SC11						
List of eige	nvalues in descen	ding order:				
.41275	.31283	.26489	.22101	.027225	.1702E-3	
	Null Al	ternative Statist	ic 95% Critical	Value 90%Crit	ical Value	
r = 0	r = 1	aw Tawad A	69.1992	an Antietton	36.2700	33.4800
r < = 1	r = 2		48.7730		29.9500	27.5700
r < = 2	r = 3		40.0052		23.9200	21.5800
r < = 3	r = 4		32.4691		17.6800	15.5700
r < = 4	r = 5		3.5883		11.0300	9.2800
r < = 5	r = 6		.022128		4.1600	3.0400
	Co Cointe	ointegration with gration LR Test	no intercepts of Based on Trace	r trends in the V of the Stochasti	/AR c Matrix	
50		ternative Statist				-
r = 0	r>=1	C (404) 3	194.0569	5884 C SS60	83.1800	78.4700
r < = 1	r > = 2		124.8577		59.3300	55.4200
r < = 2	r > = 3		76.0847		39.8100	36.6900
r < = 3	r > = 4		36.0795	DATE TO THAT	24.0500	21.4600
r < = 4	r > = 5		3.6104		12.3600	10.2500
r < = 5	r = 6		.022128		4.1600	3.0400

Table 5B
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets)

	Vector 1	Vector 2	Vector 3	Vector 4
LRF	86081	44992	-1.1689	54292
	(-1.0000)	(-1.0000)	(-1.0000)	(-1.0000)
LPF	59905	16243	.10579	.34361
	(69592)	(36103)	(.090499)	(.63289)
LPI	.42315	027838	32963	.26442
	(.49158)	(061874)	(28199)	(.48703)
LPG	.34876	.098926	.21300	010736
	(.40515)	(.21988)	(.18222)	(019775)
LPS	.15905	22980	.098513	54781
	(.18477)	(51076)	(.084276)	(-1.0090)
LPP	16570	.45262	15935	082039
	(19250)	(1.0060)	(13632)	(15111)

Table 6A Cointegration with Restricted Intercepts and no Trends in the VAR

	Cointegration	with Restri	icted Interc	epts an	d no Tren	ds in the VAR	
	Cointegration Ll	R Test Based	on Maximal	Eigenva	lue of the S	tochastic Matrix	
129 observa	tions from 1995M3	to 2005M11.	Order of V	'AR = 2	HETHER	\$3500 modern	a consider
List of varia	bles included in the	cointegrati	ng vector:				
LRI	LPF	LPI		LPG		LPS	
LPP	Intercept						
List of I(0) v	ariables included in	n the VAR:					
SC1	SC2	SC3		SC4		SC5	
SC6	SC7	SC8		SC9		SC10	
SC11							
List of eigen	values in descendir	ng order:					
.33547		.19775	.14709		.067269	.031628	0.00
	Null Alter	native Statis	tic 95% Crit	ical Val	ue 90%Crit	ical Value	
r = 0	r = 1		52.7188			40.5300	37.6500
r < = 1	r = 2		38.6997			34.4000	31.7300
r < = 2	r = 3		28.4237			28.2700	25.8000
r < = 3	r = 4		20.5235			22.0400	19.8600
r < = 4	r = 5		8.9834			15.8700	13.8100
r < = 5	r = 6		4.1460			9.1600	7.5300
	Cointegra	ion with restr	Based on Tr	race of th	ie Stochasti	c Matrix	
	Null Alter	native Statist	tic 95% Crit	ical Val	ue 90%Crit	ical Value	
r = 0	r > = 1		153.4951		1	02.5600	97.8700
r < = 1	r > = 2		100.7763			75.9800	71.8100
r < = 2	r > = 3		62.0766			53.4800	49.9500
r < = 3	r > = 4		33.6529			34.8700	31.9300
r < = 4	r > = 5		13.1294			20.1800	17.8800
r<=5	r = 6		4.1460			9.1600	7.5300
Most - No.	Estimate	d Cointegra	Table 6 ited Vector		iansen Est	imation	
· ·	Cointegrati	on with restr	icted interce	pts and	no trends i	n the VAR	
	Vec	tor 1		537	Vector 2	Laukee	Vector 3
LRI	20	0894	(84)		62875	24606	42047
	(-1.0	000)		((-1.0000)		(-1.0000)
LPF	.24	1050			.71169		.20512
	(1.1	511)			(1.1319)		(.48783)
LPI		5124			22473		.65747
- 102	(-1.6			((35743)		(1.5637)
LPG		2160			.13006		.31587
r no	(-1.0				(.20685)		(.75123)
LPS		1952		11	45019		25957
455	(.71.	563)		(71601)		(61733)

.38279

(.60882)

-.87486

(-1.3914)

-.16227

-.95650

(-.38592)

(-2.2748)

LPP

Intercept

-.49212

(-2.3554)

.56408

(2.6998)

Table 7A

Cointegration with Restricted Intercepts and no Trends in the VAR

	Cointegration v	vith Rest	ricted Interc	epts an	d no Tren	ds in the VAR	
	Cointegration LR	Test Based	l on Maximal	Eigenva	lue of the S	tochastic Matrix	
	ions from 1995M3 to oles included in the o			AR = 2	IMEGGI -	off formal after a	pauranie da Latau e
LRG	LPF	LPI	. 0	LPG		LPS	
LPP	Intercept						
List of I(0) va	ariables included in	the VAR:					
SC1	SC2	SC3		SC4		SC5	
SC6	SC7	SC8		SC9		SC10	
SC11							
List of eigen	values in descending	order:	2.5				
.35029		1862	.17426		.072500	.031587	0.00
	Null Altern	ative Stati	istic 95% Crit	ical Val	ue 90%Crii	tical Value	
r = 0	r = 1		55.6289			40.5300	37.6500
r < = 1	r = 2		38.0504			34.4000	31.7300
r < = 2	r = 3		31.8237			28.2700	25.8000
r < = 3	r = 4		24.7003			22.0400	19.8600
r < = 4	r = 5		9.7089			15.8700	13.8100
r < = 5	r = 6		4.1405	1.		9.1600	7.5300
			tricted interce st Based on Tr				
-	Null Altern	tive Stati	stic 95% Crit	ical Val	ue 90%Crit	ical Value	
r = 0	r > = 1		164.0527		1	.02.5600	97.8700
r < = 1	r > = 2		108.4238			75.9800	71.8100
r < = 2	r > = 3		70.3734			53.4800	49.9500
r < = 3	r > = 4		38.5497			34.8700	31.9300
r < = 4	r > = 5		13.8494			20.1800	17.8800
r < = 5	r = 6		4.1405			9.1600	7.5300
	Estimated	Cointeg	Table 7 rated Vector	_	nansen Est	imation	

	Cointegration with restricted intercepts and no trends in the VAR									
	Vector 1		Vector 2	Vector 3	Vector 4					
LRG	74606	15.56-	-1.2686	75008	.44736					
	(-1.0000)		(-1.0000)	(-1.0000)	(-1.0000)					
LPF	.060145		.48298	28869	.68904					
	(.080616)		(.38072)	(38488)	(-1.5402)					
LPI	.20168		53093	.49401	.23642					
	(.27033)		(41852)	(.65861)	(52846)					
LPG	.079826		48000	0043962	.10503					
	(.10700)		(37837)	(0058610)	(23477)					
LPS	15584		.12800	.26103	58287					
	(20889)		(.10090)	(.34800)	(1.3029)					
LPP	.67180		.15556	20027	14558					
	(.90046)		(.12262)	(26700)	(.32541)					
Intercept	15215		1.3500	.50981	96792					
	(20394)	21.5	(1.0641)	(.67968)	(2.1636)					

Table 8A Cointegration with Restricted Intercents and no Trends in the VAR

						ids in the VAR	
W.	Cointegration LR	Test Based	on Maximal	Eigenvi	alue of the	Stochastic Matrix	
130 observa	tions from 1995M2 to	2005M11.	Order of V	AR = 2			
List of varia	ables included in the	cointegrati	ng vector:				
LRS	LPF	LPI		LPG		LPS	
LPP	Intercept						
List of I(0)	variables included in	the VAR:					
SC1	SC2	SC3		SC4		SC5	
SC6	SC7	SC8		SC9		SC10	
SC11							
List of eiger	nvalues in descending	g order:					
.53713		30974	.24968		.11278	.024383	.0000
	Null Altern	ative Statis	tic 95% Crit	ical Val	lue 90%Cr	itical Value	
r = 0	r = 1		100.1395	L		37.6500	
r < = 1	r = 2		59.6325			34.4000	31.7300
r < = 2	r = 3		48.1889			28.2700	25.8000
r < = 3	r = 4		37.3429			22.0400	19.8600
r < = 4	r = 5		15.5564			15.8700	13.8100
r < = 5	r = 6		3.2090	1		9.1600	7.5300
	Cointegratio						
	Cointegra	tion LR Tes	t Based on Ti	race of t	he Stochas	tic Matrix	
	Null Altern	ative Statis	tic 95% Crit	ical Val	lue 90%Cr	itical Value	
r = 0	r > = 1		264.0693			102.5600	97.8700
r < = 1	r > = 2		163.9298			75.9800	71.8100
r < = 2	r > = 3		104.2973			53.4800	49.9500
r < = 3	r > = 4		56.1084			34.8700	31.9300
r < = 4	r > = 5		18.7654			20.1800	17.8800
r < = 5	r = 6		3.2090			9.1600	7.5300

	Cointegration	with restricted intercepts and	no trends in the VAR	
	Vector 1	Vector 2	Vector 3	Vector 4
LRS	1.3217	.21732	.21343	032509
	(-1.0000)	(-1.0000)	(-1.0000)	(-1.0000)
LPF	22182	.56002	18452	44799
	(.16783)	(-2.5769)	(.86457)	(-13.7805)
LPI	.14952	41106	.25354	40881
	(11312)	(1.8915)	(-1.1880)	(-12.5754)
LPG	.16498	10968	.19530	12222
	(12482)	(.50468)	(91508)	(-3.7597)
LPS	19496	28707	24866	.36516
	(.14751)	(1.3210)	(1.1651)	(11.2328)
LPP	13360	.18435	.45718	.097198
	(.10108)	(84828)	(-2.1421)	(2.9899)
Intercept	.90258	.0091192	29226	.68629
10117	(68289)	(041962)	(1.3694)	(21.1108)

Table 9A
Cointegration with Restricted Intercepts and no Trends in the VAR

		rith Restricted Inter Test Based on Maxima				
129 observa	tions from 1995M3 to	2005M11. Order of		UNSUIT III	Terrie man	ally appears
List of varia	bles included in the c	ointegrating vector:				della in ta
LRP	LPF	LPI	LPG		LPS	
LPP	Intercept					
List of I(0) v	ariables included in t	he VAR:				
SC1	SC2	SC3	SC4		SC5	
SC6	SC7	SC8	SC9		SC10	
SC11						
List of eigen	values in descending	order:				
.34609	.22606 .12	7553 .16520		.060973	.031829	.0000
	Null Alterna	tive Statistic 95% Cri	tical Valu	e 90%Critic	al Value	
$\mathbf{r} = 0$	r = 1	54.7967	1661	4	0.5300	37.6500
r < = 1	r = 2	33.0574		3-	4.4000	31.7300
r < = 2	r = 3	24.8983		2	8.2700	25.8000
r < = 3	r = 4	23.2933		2	2.0400	19.8600
r < = 4	r = 5	8.1155		1.	5.8700	13.8100
r < = 5	r = 6	4.1727	5 1		9.1600	7.5300
	Cointegration Cointegrati	ı with restricted interc on LR Test Based on T	epts and i	no trends in e Stochastic	the VAR Matrix	
		tive Statistic 95% Cri				
r = 0	r > = 1	148,3340	D. East.		2.5600	97.8700
r < 1	r > = 2	93.5373			5.9800	71.8100
r < = 2	r > = 3	60.4798			3.4800	49.9500
r < = 3	r > = 4	35.5815		34	31.9300	
r < = 4	r > = 5	12.2883			0.1800	17.8800
r < = 5	r = 6	4.1727			9.1600	7.5300
		Table 9	9B			
		Cointegrated Vector				
	Cointegration	with restricted interc	epts and n	o trends in i	the VAR	
	Vector 1	Vector 2	lanV	Ve	ector 3	Vector 4
LRP	.18499	13005		-,	49152	43414
	(-1.0000)	(-1.0000)		(-1.	.0000)	(-1.0000)
LPF	13579	.45697			55862	49686
	(.73401)	(3.5138)		(1.	1365)	(-1.1445)
LPI	.33915	63862			27364	.034793
	(-1.8333)	(-4.9105)		(.5	5673)	(.080142)
LPG	.20169	14006			31841	.33423
	(-1.0903)	(-1.0769)			4781)	(.76987)
TTO	24552	080672			46582	.69664
LPS	34553	.000072				
	(1.8678)	(62031)		(09	4771)	(1.6046)
					4771) 42307	
LPS LPP	(1.8678) .54447 (-2.9432)	(62031)			42307	(1.6046)
	(1.8678) .54447	(62031) .32861		004 (008	42307	(1.6046) .065658

Based on visual inspection of the graphical representations corresponding to the estimated cointegrating vectors, we adopt only the ones that fit to the properties of a stationary procedure. These vectors were next employed in the EC specifications constructed to explore the short and long run dynamics of the examined relationships. Actually, we adopt the 1st cointegrating vector for the cases of France, Spain and Portugal while for Italy and Greece we adopt the 2nd one.

Thereafter, we estimated the implied error correction VAR system (ECVAR), in order to proceed with the investigation of the dynamic characteristics of the examined relationships in both the short and long run time horizons. The results for each country case are presented in Tables 5C, 6C, 7C, 8C and 9C respectively. In particular, these Tables report the Wald tests for the hypothesis that the involved groups of first differenced lagged explanatory variables do not Granger cause the respective RCA index. Furthermore, we report the *t*-tests applied on the lagged EC terms to examine for the existence of possible long run causal effects directed towards the dependent variable.

Table 5C
WALD Tests for Granger-causality Effects Based on the Error Correction Model for LRF

Lagged groups of Explanatory variables	X² value	p-value	t-ratio	p-value
LPF	4.85	0.08		******
LPI	4.07	0.13		
LPG	7.20	0.03		
LPS	3.48	0.17		
LPP	1.64	0.44		
Lagged EC term	of Creek and In-	room will an had od	-8.23	0.00

Table 6C
WALD Tests for Granger-causality Effects Based on the Error Correction Model for LRI

Lagged groups of Explanatory variables	X² value	p-value	t-ratio	p-value
LPF	7.22	0.03	i of significance r	9791 and 645
LPI	0.94			
LPG	1.71	0.48		
LPS	2.11	0.35		
LPP	5.00	0.08		
Lagged EC term	Dan Francisco	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-2.48	0.01

Table 7C
WALD Tests for Granger-causality Effects Based on the Error Correction Model for LRG

Lagged groups of Explanatory variables	X² value	p-value	t-ratio	p-value
LPF	5.84	0.05	I finally for Porc	vie 251
LPI	3.65	0.16		
LPG	5.78	0.06		
LPS	3.94			
LPP	5.82	0.05		
Lagged EC term		15	-3.38	0.00

Table 8C
WALD Tests for Granger-causality Effects Based on the Error Correction Model for LRG

Lagged groups of Explanatory variab	oles	X² value	next empl	p-value	se vector	t-ratio	p-value
LPF	out fire o	5.80	rector to: 1	0.06			
LPI		3.92		0.14			
LPG		3.57		0.16			
LPS		7.91		0.02			
LPP		3.36	Oxed alsome	0.18		ale add the sh	pille ieli i
Lagged EC term	iq m.v	h pectri c	or Difflate .	7C, 80	J9 , J4, 69	-3.98	0.00

Table 9C
WALD Tests for Granger-causality Effects Based on the Error Correction Model for LRP

Lagged groups of Explanatory variables	X² value	p-value	t-ratio	p-value
LPF	6.94	0.03		
LPI	1.52	0.47		
LPG	4.52	0.11		
LPS	6.11	0.04		
LPP	3.60	0.16		191
Lagged EC term		80.0	-3.38	0.00

More specifically, the results reveal the followings; for France, in the short run (1st quarter), LRF is causally affected by the prices of Greek and French exports at the 3% and 8% level of significance respectively. The EC term has the correct negative sign and is significant at a significance level lower than 1%, revealing a long run causal effect from the exports prices of the examined countries on LRF; for Italy, in the short run, LRI is causally affected by the prices of French and Portuguese exports at the 3% and 8% level of significance respectively. The EC term has the correct negative sign and is significant at the 1% level, revealing long run causal effect from the exports prices of the examined countries on LRI; for Greece, in the short run, LRG is Granger caused by the prices of French, Greek and Portuguese exports at the 5%, 6% and 5% significance levels respectively. The EC term is negative and statistically strongly significant (lower than the 1% level), revealing long run causal effect from the exports prices of the examined countries on LRG; for Spain, LRS is Granger caused by the prices of French and Spanish exports at the 6% and 2% significance level respectively. The EC term is negative and statistically strongly significant (lower than the 1% level) , revealing long run causal effect from the exports prices of the examined countries on LRS; and finally, for Portugal in the short run, LRP is causally affected by the prices of French and Spanish exports at the 3% and 4% level of significance respectively. The EC term has the correct negative sign and is significant at a significance level lower than the 1% level, revealing long run causal effect from the exports prices of the examined countries on LRP.

3.3 Variance Decomposition Analysis

With regard to the medium run dynamics (1-24 months ahead), which seems a meaningful time horizon for the purposes of our analysis, we applied Innovation Accounting analysis and specifically the Variance Decomposition technique, in order to make clear the way each one of the RCAs responds when shocked in the context of the estimated ECVAR system. The findings, reported in tables 5D, 6D, 7D, 8D and 9D, demonstrate significant variations between the considered countries. In specific, the most significant explanatory factor for the RCA of French exports is the prices of Greek exports, both in the short and medium run (12%-28%). The prices of French and Spanish exports comprise a rather very weak explanatory factor (8%-10%) and only in the medium run (12-24months) for the behaviour of RCA of this country (Table 5D). For Italy, the main explanatory factor for the RCA is the prices of French exports, both in the short and medium run (19%-34%) as well as the Portuguese ones (10%-12%), after the 12th month. The prices of Italian exports are not important in explaining the behaviour of the RCA of this country (Table 6D). Next, with regard to the Greek case, the results suggest that the price of French exports is the most important explanatory factor for the RCA, though only in the medium run (14%-20%). The prices of Greek exports also constitute a significant explanatory factor for the behaviour of RCA (12%-18%) of this country for the same time horizon. Of less importance (7%-10%) and in the same time horizon appear the Spanish prices (Table 7D). Regarding the Spanish case, the results reveal that the prices of Spanish exports comprise the dominating explanatory factor for the behaviour of the RCA of this country, both in the short and medium run (21%-35%), while the prices of French exports explain another 10%-14% but only in the medium run (Table 8D). Finally, the RCA of the Portuguese exports is explained by the prices of the French and Spanish exports, mainly in the medium run (22%-30% and 15%-18% respectively). Of less importance (7%-10%) and in the same time horizon appear the Greek prices, while the prices of the Portuguese exports do not exhibit any causal effect on the behaviour of the Portuguese RCA (Table 9D).

Table 5D
Orthogonalized Forecast Error Variance Decomposition for Variable LRF

Horizon	LRF	LPF	LPI	LPG	LPS	LPP
0	1.00000	0.00	0.00	0.00	0.00	0.00
6	.75344	.073304	.018214	.11824	.033412	.0033874
12	.59592	.089197	.043624	.19768	.065546	.0080330
18	.49976	.098242	.059523	.24604	.085431	.011001
24	.43528	.10429	.070192	.27846	.098772	.012996

Table 6D
Orthogonalized Forecast Error Variance Decomposition for Variable LRI

	Offiliogoffanzi	cu I ofccust Life	I Vallatice Dec	miposition		
Horizon	LRI	LPF	LPI	LPG	LPS	LPP
0	1.0000	0.00	0.00	0.00	0.00	0.00
6	.69453	.19313	.0096259	.011690	.012487	.078537
12	.57943	.27629	.0089577	.011425	.020579	.10331
18	.52318	.31647	.0085333	.011293	.024547	.11597
24	.49016	.34004	.0082827	.011215	.026875	.12342

Table 7D
Orthogonalized Forecast Error Variance Decomposition for Variable LRG

	Cointegration with restricted intercepts and no trends in the VAR								
Horizon	LRG	LPF	LPI	LPG	LPS	LPP			
0	1.0000	0.00	0.00	0.00	0.00	0.00			
6	.71730	.074541	.029261	.071428	.033953	.073522			
12	.57275	.13711	.043717	.11745	.067072	.061899			
18	.47948	.17636	.052714	.14740	.089659	.054386			
24	.41432	.20368	.058990	.16835	.10549	.049171			

Table 8D
Orthogonalized Forecast Error Variance Decomposition for Variable LRS

	Cointegration with restricted intercepts and no trends in the VAR									
Horizon	LRS	LPF	LPI	LPG	LPS	LPP				
0	1.0000	0.00	0.00	0.00	0.00	0.00				
6	.65805	.067155	.022509	.022259	.21211	.017922				
12	.51783	.10467	.042970	.028724	.28575	.020061				
18	.43825	.12634	.054621	.032379	.32726	.021144				
24	.38696	.14031	.062131	.034735	.35402	.021841				

Table 9D
Orthogonalized Forecast Error Variance Decomposition for Variable LRP

	Cointegration with restricted intercepts and no trends in the VAR								
Horizon	LRP	LPF	LPI	LPG	LPS	LPP			
0	1.00000	0.00	0.00	0.00	0.00	0.00			
6	.70370	.12442	.0029475	.046320	.11112	.011496			
12	.53694	.22149	.0046444	.077476	.15015	.0092993			
18	.44908	.27292	.0060625	.093567	.16956	.0088082			
24	.39659	.30376	.0069173	.10313	.18103	.0085605			

Note: Variables LRF, LRI, LRG, LRS and LRP represent the French, Italian, Greek, Spanish and Portuguese RCA indices respectively, while LPF, LPI, LPG, LPS and LPP represent the French, Italian, Greek, Spanish and Portuguese Prices, respectively.

4. CONCLUSIONS

This paper has attempted to evaluate the competitive position of the French, Italian, Greek, Portuguese and Spanish fresh fish exports towards the EU market and to investigate the possible factors affecting this competitive level. RCA indices and prices of exports of the above countries were estimated. Afterwards, econometric analysis was used in order to investigate the dynamic interactions between the estimated RCA indices and prices. Results demonstrate that all countries, except Spain, reveal competitive advantage. Greek exports present the highest competitive level, followed by French, Portuguese and Italian. Prices estimations reveal that exports from all countries present an upward trend, except Greek exports that portray a downward trend. Furthermore, export prices of France, Italy and Portugal do not comprise important explanatory factor for RCA of these countries, indicating that non prices factors play the most important role in their competitive position. Among countries revealing competitive advantage, only export prices of Greece comprise important

explanatory factor for the RCA behaviour of this country. Finally, French export prices comprise the most important explanatory factor for the behaviour of RCA of almost all countries, either in the short or in the medium run.

Thus, the competitive position for each country is affected by different factors and in all cases at different levels, constituting a dynamic market that can easily be influenced by the continual changes in the volatile marketing environment. Therefore, marketing strategies should be cautiously devised, aiming to improve the particular explanatory factors for each country, fostering the competitiveness of Med5 fresh fish exports towards the EU market.

References

- Balassa B., (1965), Trade Liberalization and Revealed Comparative Advantage, The Manchester School of Economic and Social Studies, 33, 99-123.
- Baltzer K., (2004), Consumers' Willingness to Pay for Food Quality: The Case of Eggs, *Food Economics*, 1, 78-90.
- Banterle A.. (2005), Competitiveness and Agri-food Trade: An Empirical Analysis in the E.U., Paper Presented at the 11th EAAE Congress, Copenhagen, August 24-27.
- Dickey D. A., and Fuller W. A., (1981), Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root, *Econometrica*, 49, 1057-1072.
- Drescher K., and Maurer O., (1999), Competitiveneness in the European Dairy Industries, *Agribusiness*, **15**, 163-177.
- Engle R. F., and C. W. J. Granger, (1987), Cointegration and Error Correction: Representation, Estimation and Testing, *Econometrica*, 55, 251-76.
- Granger C. W. J., and P. Newbold, (1974), Spurious Regressions in Econometrics, Journal of Econometrics, 2, 111-20.
- Havrila I., and Gunawardana P., (2003), Analysing Comparative Advantage and Competitiveness: an Application to Australia's Textile and Clothing Industries, *Australian Economic Papers*, **42**(1), 103-117.
- Hillman A. L., (1980), Observations on the Relation Between "Revealed Comparative Advantage" and Comparative Advantage as Indicated by Pre-Trade Relative Prices, Weltwirtschaftliches Archiv, 116, 315-321.
- Hobbs J. E., Fearne A., and Spriggs J., (2002), Incentive Structures for Food Safety and Quality Assurance: An International Comparison, Food Control, 13, 77-81.
- Hyvonen S., (1995), Competitive Advantage, Bargaining Power and Organizational Performance: The Case of Finnish Food and Manufacturing Firms, *Agribusiness*, **4**, 333-348.
- Jensen H., Voigt S., and Hayes D., (1995), Measuring International Competitiveness in the Pork Sector, *Agribusiness*, **2**, 169-177.
- Johansen S., (1988), Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12, 231-254.
- Johansen S., and Juselius K., (1990), Maximum Likelihood Estimation and Inference on Cointegration with Application to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52, 169-209.
- Kennedy L., Harrison W., Kalaitzantonakis N., Peterson C., and Rindfuss R., (1997), Perspectives on Evaluating Competitiveness in Agribusiness Industries, *Agribusiness* 13(4), 385-392.
- Kim D., and Marion B. W., (1997), Domestic Market Structure and Performance in Global Markets: Theory and Empirical Evidence from U.S. Food Manufacturing Industries, *Review of Industrial Organization*, 12, 335-354.

42 / INTERNATIONAL JOURNAL OF ECONOMIC ISSUES

- Lee J., (1995), Comparative Advantage in Manufacturing as a Determinant of Industrialization: The Korean Case, World Development, 23(7), 1195-1214.
- Murphy E., (1989), Comparative Advantage in Dairying: An Intercountry Analysis within the European Community, European Review of Agricultural Economics, 1, 19-36.
- Pitts E., and Lagnevik M., (1998), What Determines Food Industry Competitiveness? In W. B. Traill and E. Pitts (Eds), *Competitiveness in the Food Industry*, London: Blackie, 1-34.
- Phillips P. C. B., (1986), Understanding Spurious Regressions in Econometrics, *Journal of Econometrics*, 33, 311-40.
- Porter M., (1990), The Competitive Advantage of Nations, New York: Free Press.
- Tefertiller K., and Ward R., (1995), Revealed Comparative Advantage Production Advantage: Implications for Competitiveness in Florida's Vegetable Industry", *Agribusiness*, **2**, 105-115.